半导体衬底材料领域共经历三个发展阶段:
第一阶段是20世纪50年代起,以硅Si为代表的第一代半导体材料制成的二极管和晶体管取代了电子管,主要应用于低压、低频、低功率晶体管和探测器中,如电脑 CPU、GPU、内存、手机的SoC等器件,引发以集成电路为核心的微电子产业的迅速发展。但是硅材料的物理性质限制了其在光电子和高频电子器件上的应用,如其间接带隙的特点决定了它不能获得高的电光转换效率,且其带隙宽度较窄(1.12 eV)、饱和电子迁移率较低(1450 cm2/V·s),不利于研制高频和高功率电子器件。
第二阶段是20世纪90年代开始,随着半导体产业的发展,硅材料的物理瓶颈日益突出,以砷化镓GaAs、磷化铟InP为代表的第二代半导体材料崭露头角,相关器件制备技术逐渐成熟,使半导体材料进入光电子领域。GaAs良好的光学性能使得其在光学器件中广泛应用,也应用在需要高速器件的特殊场合,是4G时代的大部分通信设备的材料,如毫米波器件、发光器件、卫星通讯、移动通讯、光通讯、GPS导航等。但是禁带宽度(禁带宽度反映了价电子被束缚强弱程度,直接决定着器件的耐压和最高工作温度)不够大、击穿电场较低,限制了其在高温高频和高功率器件领域的应用,且砷有毒。
第三阶段是近年来,以碳化硅SiC、氮化镓GaN为代表的第三代半导体材料,在禁带宽度、击穿电场强度、饱和电子漂移速率、热导率以及抗辐射等关键参数方面具有显著优势,进一步满足了现代工业对高功率、高电压、高频率的需求,作为5G时代的主要材料,用于高温、高频、抗辐射、大功率器件; 蓝、绿、紫光二极管、半导体激光器等。
(二)材料性能
(三)主要应用
目前全球95%以上的芯片和器件是以硅作为基底材料,由于硅材料具有极大的成本优势,未来在各类分立器件和集成电路领域硅仍将占据主导地位,但是化合物半导体材料独特的物理特性优势,赋予其在射频、光电子、功率器件等领域的独特性能优势。
根据电阻的不同,砷化镓材料可以分为半导体型和半绝缘型。半绝缘型砷化镓衬底由于电阻率较高、高频性能好,可制作 MESFET、HEMT 和 HBT 结构的电路,主要用于雷达、卫星电视广播、微波及毫米波通信、无线通信(以手机为代表)及光纤通信等领域,主要用来制作手机中的 PA 元件,在高频功率放大器市场上占据 85%的市场份额。半导体型砷化镓单晶占整个 GaAs 市场的 60%左右,主要应用在 LED 和 VCSEL(垂直共振腔表面发射激光器)等光电子器件。
8、晶片清洗:用氨水、双氧水和纯水混合液对晶片进行清洗,去除前道工序加工后晶片表面残留的尘埃及化学残留物,干燥后的晶片检验合格后包装为成品。
从20世纪50年代开始,就已经开发出了多种砷化镓单晶生长方法。目前主流的工业化生长工艺包括:液封直拉法(LEC)、水平布里奇曼法(HB)、垂直布里奇曼法(VB)以及垂直梯度凝固法(VGF)等。
住友是全球半绝缘型砷化镓单晶片水平最高的公司,以VB法生产砷化镓为主,能够量产4寸和6寸单晶片;德国Freiberger主要以VGF、LEC法生产2到6英寸砷化镓衬底,产品全部用于微电子领域;美国AXT产品中一半用于LED,一半用作微电子衬底。国内供应商砷化镓衬底主要用于LED芯片,少数公司如云南锗业用于射频的砷化镓衬底逐渐放量。
碳化硅晶片作为半导体衬底材料,根据电阻率不同,可分为导电型和半绝缘型。其中,导电型碳化硅晶片主要应用于制造耐高温、耐高压的功率器件,在新能源汽车、光伏发电、轨道交通、智能电网、航空航天等领域应用多,市场规模较大;半绝缘型碳化硅衬底主要应用于微波射频器件等领域,如5G通讯、雷达等,随着 5G 通讯网络的加速建设,市场需求提升较为明显。
(二)工艺流程
(8)晶片清洗。以清洗药剂和纯水对碳化硅抛光片进行清洗处理,去除抛光片上残留的抛光液等表面沾污物,再通过超高纯氮气和甩干机将晶片吹干、甩干;将晶片在超净室封装在洁净片盒内,形成可供下游即开即用的碳化硅晶片。
1.高纯粉料
高纯碳粉是生长高质量SiC晶体的基础,尤其对半绝缘型SiC晶体生长有至关重要的影响,涉及到制备技术、合成技术和提纯技术。其中高纯度碳粉提纯对工艺要求极高,而合成涉及到的配方技术需要长时间的摸索和积累。
2.数字仿真技术
单晶生长缓慢是碳化硅衬底成本高居不下的重要原因。目前Cree和国内主流厂家都采用PVT物理气相传输法。由于碳化硅晶体生长速度远慢于硅晶体,8寸硅晶圆2-3天可以生长至1-2米,而碳化硅4寸晶圆一周只能生长2-6cm。影响晶体生长的一个重要因素是籽晶繁殖,籽晶是和碳化硅单晶晶体具有相同晶体结构的“种子”晶片,是晶体生长之源,晶体生长附着凝结于仔晶之上。籽晶生长是碳化硅制备的核心技术,也是评判所有碳化硅衬底企业的核心技术之一,籽晶一般不对外销售。
4.单晶加工技术
由于碳化硅硬度非常高且脆性高,使得打磨、切割、抛光都耗时长且良品率低。硅片切割只用几小时,而6寸碳化硅片切割要上百小时。
目前市场4英寸碳化硅衬底比较成熟,良率较高,同时价格较低,而6英寸衬底价格由于供给少和成片良率低,价格远远高于4寸片。未来推动碳化硅衬底成本降低的三大驱动力:工艺和设备改进以加快长晶速度;缺陷控制改进提升良率;设计改进降低使用器件的衬底使用面积。
(五)全球竞争格局
目前SiC晶片市场主要由美、欧、日主导,中国企业开始崭露头角。据Yole预测,2017-2023年,SiC的复合年增长率将达到31%,2023年达到约15亿美元市场规模。根据半导体时代产业数据中心《2020年中国第三代半导体碳化硅晶片行业分析报告》数据,2020上半年全球半导体SiC晶片市场中,美国CREE出货量占据全球45%;欧洲企业在SiC器件的设计开发领域较强,主要企业有Siltronic、意法半导体、IQE、英飞凌等;日本的技术力量雄厚,产业链完整,代表企业有松下、罗姆、住友电气、三菱等,罗姆子公司SiCrystal 占据20%,II-VI占13%;中国企业发展较快,天科合达的市占率由 2019年的3%上升至2020年的5.3%,山东天岳占比为2.6%。
受技术与工艺水平限制,GaN材料作为衬底实现规模化应用仍面临挑战,因为氮化镓材料本身熔点高,而且需要高压环境,很难采用熔融的结晶技术制作GaN衬底。目前主要在Al2O3蓝宝石衬底上生长氮化镓厚膜制作的GaN基板,然后通过剥离技术实现衬底和氮化镓厚膜的分离,分离后的氮化镓厚膜可作为外延用的衬底。这种基板以前的主流是2英寸口径,现在出现了4~6英寸的基板。优点是位错密度明显低,但价格昂贵,因此限制了氮化镓厚膜衬底的应用。
目前通常使用的氨气相法(或HVPE法)需要1000℃以上的生长温度,因此单晶蓝宝石(Al2O3)作为在高温氨气下特性依然稳定的基板受到关注。由于GaN与蓝宝石的化学性质(化学键)、热膨胀系数和晶格常数相差较大,在蓝宝石上生长的GaN晶体表面像磨砂玻璃一样粗糙,而且晶体缺陷非常多,无法获得能够用于半导体元件的高品质GaN。1986年,名古屋大学工学部教授赤崎勇开发出了“低温堆积缓冲层技术”。该技术利用氮化铝(AlN)作为缓冲层进行堆积,可以在蓝宝石基板上生长晶体缺陷少而且表面平坦的GaN晶体。
由于GaN材料硬度高、熔点高等特性,衬底制作难度高,良率低,技术进步缓慢,GaN晶圆的成本仍然居高不下,2005年2英寸的GaN衬底片成本2万美元,现在价格仍然在3000美元水平,对比之下,4英寸GaAs衬底成本仅需100-200人民币。目前通过外延技术可以将GaN生长在SiC、Si、蓝宝石、金刚石等其他材料衬底上,有效的解决GaN衬底材料的限制问题。
首页产品中心代理品牌IC学院 IC资讯成功案例常见问题了解海芯微 企业新闻联系我们企业招聘
Copyright © 2005-2010 All rights reserved 深圳市海芯微半导体有限公司 粤ICP备2021124640号CNZZ()
地址:广东省深圳市宝安区西乡街道宝源路宝港中心电话:0755-33561021
传真:0755-85298357邮箱:haixin_IC@163.com技术支持:海芯微半导体
深圳最专业的IC代理商,IC供应商,NXP代理商,TI代理商,MAXIM美信代理商,合泰代理商,英飞凌代理商,赛灵思代理商.你身边最优秀的IC供应商合作伙伴
升邦科技官方微信
扫一扫立即加关注